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ABSTRACT 

 

 In this paper, a novel dispersion model, referred to as the General Model is proposed for modeling arbitrary linear dispersive 
materials. This model is proved to be more efficient in fitting the material permittivity functions compared with the conventional Debye, 

Drude and Lorentz models. A generally applicable method is introduced to estimate the parameters of this model with no initial guess 

requirement, which makes it feasible in practical applications. The new model is implemented in the FDTD method to improve the 
efficiency of simulating optical devices in a wide wavelength range. The absorption and extinction cross section spectra characteristics of 

different nanoparticles are systematically studied by employing the implemented method. 

 

Keywords: General Model, FDTD, cross section spectra, nanoparticles.. 

 

INTRODUCTION 
 

 Dispersive materials, such as metals, are widely 

used in optical devices. TheFinite-Difference Time-

Domain (FDTD) method [8]. is one of the most 

common choices for simulating such devices in a 

wide frequency range. One of the most important 

advantages of the FDTD method is that the 

broadband response can be accurately obtained in 

only one simulation run [2].Several simple dispersion 

models, such as multi-pole Debye, Drude, and 

Lorentz models, have been widely adopted for 

modeling dispersive materials using the FDTD 

method [12].To fit permittivity function of a given 

material accurately in awide frequency range, a large 

number of poles are required in these models. Rakic 

and Djurisic used the Durde model with up to five 

Lorentzian terms to fit the permittivity functions of 

eleven metals [7]. Hao and Nordlander proposed an 

improved model consisting of four Lorentzian terms 

to fit dielectric data of gold. All the proposed multi-

pole models archived good fit to the measure data. 

However, using a dispersion model with a large 

number of poles not only requires a lot of efforts for 

modal parameter estimation but also dramatically 

increases the memory and computational costs of the 

FDTD method [12].Han, Dutton and Fan [4] 

proposed a complex-conjugate pole-residue pair 

model and implemented it in the FDTD method to 

increase the modeling efficiency [10].However, these 

authors did not propose an efficient method for the 

parameters estimation.TheFDTD formulation for 

dispersive materials are developed using the Z 

transform and frequency approximation methods 

[1].In this paper, a dispersion model, referred to as 

the general model with a parameter estimation 

method is proposed for the simulation of optical 

properties of arbitrary linear dispersive media over a 

wide wavelength range. Theconventional Debye, 

Drude and Lorentz models are derivable from this 

general model. The time domain properties of the 

proposed model are analyzed. It is demonstrated that 

the model can fit the relative permittivity data of a 

material accurately and efficiently in a wide 

wavelength range and the parameters of this model 

can be estimated requiring no initial guess. 

Thegeneral model is implemented in the FDTD 

method as a powerful and computationally efficient 
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tool for simulating nanoparticles of dispersive 

materials in a wide wavelength range of light. By 

employing this model, a systematic study of the 

optical properties of different nanoparticles gives a 

good reference for designs of optical devices 

utilizing the cross-section spectra characteristics of 

nanoparticles. 

 

2. General Dispersion Model: 

 Assuming the time harmonic dependence,𝑒𝑗𝜔𝑡 , 

the general model is proposed to describe the 

dispersive material’s relative permittivity expressed 

by the fraction form as 

εr ω =
 ak 

N
k=1 (𝑗𝜔 )𝑘

 bk 
N
k=1 (𝑗𝜔 )𝑘

                                                  (1a) 

 Whereak ,bk are real numbers. The fraction 

form is the ratio of two polynomials 

 𝑎𝑘(𝑗𝜔)𝑘𝑁
𝑘=1 and 𝑏𝑘(𝑗𝜔)𝑘𝑁

𝑘=1 ,where the highest 

order of the denominator is the same as that of the 

numerator. To be conveniently adopted by the FDTD 

method, the general model is represented by its 

partial fraction expansion described by 

𝜀𝑟(𝜔) = 𝜀∞ +   𝜒𝑘(𝜔)𝐿
𝑘=1                                  (1b) 

Where 

 𝜒𝑘 𝜔 =
 Cn 

q-2
n=0 (𝑗𝜔 )𝑛

 Dn 
q

n=0
(𝑗𝜔 )𝑛

                                             (2a) 

Where Ck ,Dk are real numbers. 

Or, 

𝜒𝑘 𝜔 =

 
 
 

 
 

𝑟𝑘

𝑗𝜔 −𝑝𝑘
   ;    if  𝑝𝑘  is  real

𝑟𝑘

𝑗𝜔 −𝑝𝑘
+

𝑟∗𝑘

𝑗𝜔 −𝑝∗𝑘
 ;  if  𝑝𝑘  is complex

 
𝑟𝑘,𝑢

(𝑗𝜔 −𝑝𝑘)𝑢
𝑈
𝑢=1 ;   if  𝑝𝑘  is a multiple root

  

                         (2b) 

 Where𝜀∞ , 𝑟𝑘  and  𝑝𝑘 ; are the direct coefficient, 

residue, and pole, respectively. The partial fraction 

term𝜒𝑘 𝜔 ,is the frequency domain susceptibility 

function. It has three forms depending on the 

properties of the pole 𝑝𝑘 : 1) a real fraction term with 

a real residue and a real pole, when 𝑝𝑘  is a real 

number; 2) two complex fraction terms consist of 

complex conjugate residue and pole pairs, when 𝑝𝑘 is 

a complex number; and 3) a summation of fraction 

terms which contains high order (>1) of j, when 

𝑝𝑘 is a multiple root of the denominator 

 𝑏𝑘(𝑗𝜔)𝑘𝑁
𝐾=1 It is observed that the third 

expression of 𝑝𝑘should be avoided in the parameter  

 It shows that Debye, Drude, and Lorentz models 

are all special cases of general model with specified 

parameters. The general model treats the Debye, 

Drude, and Lorentz materials in a unified. 

 
Table 1: Coefficients of dispersion models. 

Model 𝜀𝑟(𝜔) L 𝑝𝑘  𝑟𝑘  𝑝𝑘+1 𝑟𝑘+1 

Debye 𝜀∞ +  
∆𝜀𝑝

𝑗𝜔𝛾𝑝 + 1

𝑁𝑝

𝑝=1

 𝑁𝑝  -1/𝛾𝑘  
∆𝜀𝑘
𝛾𝑘

 -- -- 

Drude 𝜀∞ +  
𝜔𝑝

2

−𝜔2  + 𝑗𝜔𝛾𝑝

𝑁𝑝

𝑝=1

 2𝑁𝑝  
 

0 

𝜔𝑝
2

𝛾𝑝
 −𝛾𝑝  −

𝜔𝑝
2

𝛾𝑝
 

Lorentz 𝜀∞ +  
∆𝜀𝑝𝜔𝑝

2

−𝜔2  + 2𝑗𝜔𝛾𝑝 +  𝜔𝑝
2

𝑁𝑝

𝑝=1

 𝑁𝑝  −𝛾𝑝 − 𝑗 𝜔𝑝
2 − 𝛾𝑝

2 
𝑗

∆𝜀𝑝𝜔𝑝
2

2 𝜔𝑝
2 − 𝛾𝑝

2
 

(𝜔𝑝 > 𝛾𝑝) 

 

- 

 

- 

Complex-conjugate 

pole- residue pair 𝜀∞ +  (
𝑟𝑘

𝑗𝜔 − 𝑝𝑘
+

𝑁𝑝

𝑘=1

𝑟𝑘
∗

𝑗𝜔 − 𝑝𝑘
∗) 𝑁𝑝  Complex number Complex number 

 

- 

 

- 

 

 Formulation, which simplifies the 

implementation of dispersion models in numerical 

simulation algorithms, such as the FDTD method. It 

also shows that when,𝑝𝑘  is a complex number, the 

partial fraction form of the  

 General model is the same as the complex 

conjugate pole-residue pair model.  

 To study properties of the general model in 

time domain, the inverse Fourier transformation is 

performed on the frequency domain susceptibility 

function 𝜒𝑘 𝜔 defined in equation (2b). If 𝑝𝑘 is a 

real number, the time domain susceptibility is 

expressed by 

𝜒𝑘 𝑡 = 𝑟𝑘𝑒
𝑝𝑘𝑡𝑈 (𝑡)                                              (3) 

 Where,Utis the unit step function. It shows 

that when 𝑝𝑘, the susceptibility is exponentially 

growing with time, which contradicts the 

phenomenon that the lightwave is decaying when 

propagating in lossymaterials, such as metals. Thus, 

the parameter 𝑝𝑘should not be greater than zero 

when modeling lossy materials in this model. If 𝑝𝑘 is 

a complex number, the frequency domain 

susceptibility can be reformed as

𝜒𝑘 𝜔 =
(−𝑟𝑘𝑝𝑘

∗−𝑝𝑘𝑟𝑘
∗)

−𝜔2− 𝑝𝑘
∗+𝑝𝑘 𝑗𝜔 +𝑝𝑘

∗𝑝𝑘
+

(𝑟𝑘+𝑟𝑘
∗)

−𝜔2− 𝑝𝑘
∗+𝑝𝑘 𝑗𝜔 +𝑝𝑘

∗𝑝𝑘
              (4) 

 The time domain susceptibility is obtained by 

taking the inverse Fourier transformation, as 

expressed by 

𝜒𝑘 𝑡 = 𝜁𝑘𝑒
−𝛼𝑘𝑡 sin 𝜅𝑘𝑡 𝑈  𝑡 

+
𝑑

𝑑𝑡
 𝜉𝑘𝑒

−𝛼𝑘𝑡 sin 𝜅𝑘𝑡 𝑈  𝑡     (5) 

 Where 

𝛼𝑘 =
− 𝑝𝑘

∗ + 𝑝𝑘 

2
𝜅𝑘 =  𝑝𝑘

∗p𝑘−∝𝑘 
2  

𝜁𝑘 =
(−𝑟𝑘𝑝𝑘

∗ − 𝑝𝑘𝑟𝑘
∗)

𝜅𝑘
𝜉𝑘 =

(𝑟𝑘 + 𝑟𝑘
∗)

2
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 It is noteworthy that when the real part of 𝑝𝑘 is 

positive, the parameter 𝛼𝑘 is negative (𝛼𝑘 ). The 

time domain susceptibility 𝜒𝑘 𝑡 will grow 

exponentially with time, which contradicts the 

property of the lossy materials. The above analysis 

comes out a natural conclusion that the real part of 

the pole parameter 𝑝𝑘should not be bigger than zero 

𝛼𝑘 when using the general model to model lossy 

dispersive materials.

 The general model can be easily and efficiently 

implemented in the FDTD method with an auxiliary 

differential equation (ADE) scheme. In Maxwell’s 

equations, Ampere’s law in frequency domain is 

expressed by 

𝑗𝜔𝜀0𝜀∞𝑬 + 𝝈𝑬 +  𝑱 𝑳
𝒌=𝟏 𝒌

= 𝛁 × 𝑯                       (6) 

 Where,𝐉𝐤is the polarization current related with 

each term in the summation of the general model, 

defined by 

𝑱 𝒌 =

 

𝑗𝜔𝜀0𝑬 
𝑟𝑘

𝑗𝜔 −𝑝𝑘
;    if  p𝑘  is real

𝑗𝜔𝜀0𝑬  
𝑟𝑘

𝑗𝜔 −𝑝𝑘
+

𝑟𝑘
∗

𝑗𝜔 −𝑝𝑘
∗ ;  if p𝑘   is complex

         (7) 

 As mentioned previously, the multiple-root 

p𝑘should be avoided in the parameter estimation 

procedure, so that it would not be concerned with the 

difficult implementation of polarization current in the 

multiple-root𝑝𝑘case. If 𝑝𝑘 is real, 𝑟𝑘 is also real. Then 

the time-domain polarization current is real and 

given by 
𝜕𝐉𝑘

𝜕𝑡
− 𝑝𝑘 𝐉𝑘 = 𝑟𝑘𝜀0

𝜕𝑬

𝜕𝑡
                                              (8) 

 If 𝑝𝑘 is complex, 𝑟𝑘 is also complex. The time-

domain polarization current has two parts𝐉𝑘and 𝐉𝑘 , 
corresponding to the two complex poles in equation 

(7). The two polarization currents are all complex 

and given by 

by 
𝜕𝐉𝑘

𝜕𝑡
− 𝑝𝑘 𝐉𝑘 = 𝑟𝑘𝜀0

𝜕𝑬

𝜕𝑡
                                              (9) 

𝜕𝐉𝐤
′

𝜕𝑡
 −  𝑝𝑘

∗𝐉𝐤
′ = 𝑟𝑝

∗𝜀0
𝜕𝑬

𝜕𝑡
                                            (10) 

 Because Etis real, if the initial values for the 

two polarization current are the same, the two parts 

are mutual complex conjugate, i.e.𝐉𝐤
′ = 𝐉𝐤

∗ .Only one 

complex equation, either equation (9) or (10), needs 

to be computed in the FDTD calculation. In the 

following derivation, equation (9) is employed. 

Therefore, when 𝑝𝑘 is complex, the real part of the 

time domain polarization current is Re [𝐹−1(𝑱 𝒌)]=2 

Re (𝐉𝑘) .By applying the inverse Fourier transform on 

both sides of equation(6), the time domain Ampere’s 

curl equation is obtained as

𝜀0𝜀∞
𝝏

𝝏𝒕
𝐄 + 𝝈𝐄 +  𝑚𝑅𝑒(𝐉𝑳

𝒌=𝟏 𝒌
) = 𝛁 × 𝐇           (11) 

 Where m 1if 𝑝𝑘 is real; m 2 if 𝑝𝑘 is complex. 

The time domain polarization current equation and 

Ampere’s curl equation are combined together and 

discretized in the explicit FDTD scheme, yielding

 

𝑬|𝑛+1/2 =

𝐶𝑎𝑬|𝑛−1/2 + 𝐶𝑏 [𝛁 × 𝑯|𝑛 − 𝑅𝑒( 
𝑚

2
(𝟏 +𝑳

𝒌=𝟏

𝒌𝒑)𝐉𝑘 |𝑛−1/2)]                                                       (12) 

𝐉𝑘 |𝑛+1/2 = κ𝑘𝐉𝑘 |𝑛−1/2 + 𝛽𝑘(
𝐄|

n +
1
2−𝐄|

n−
1
2

∆t
)            (13) 

Where

 
 
 
 
 

 
 
 
 𝐶𝑎 =

2𝜀0𝜀∞−𝜎 ∆𝑡+𝑅𝑒   𝑚𝛽𝑘  
𝐿
𝑘=1

2𝜀0𝜀∞+𝜎 ∆𝑡+𝑅𝑒   𝑚𝛽𝑘  
𝐿
𝑘=1

,   

𝐶𝑏 =
2∆𝑡

2𝜀0𝜀∞+𝜎 ∆𝑡+𝑅𝑒   𝑚𝛽𝑘  
𝐿
𝑘=1

κ𝑘 =
2+  𝑝𝑘 ∆t

2−  𝑝𝑘 ∆t
 , β

𝑘
=

2𝜀0𝑟𝑘∆t

2−  𝑝𝑘 ∆t

( m = 1, if  p𝑘  is real    ;     m = 2, if p𝑘   is complex)

  

 The discretization of the magnetic field 𝑯|𝑛+1/2 

is the same as it is in the standard FDTD algorithm 

[3].This is an efficient implementation of the general 

model in the FDTD method. 

 With the same number of poles, the general 

model takes no additional memory and 

computational costs for updating the auxiliary 

equations of the polarization currents compared with 

the conventional dispersion models such as multi-

pole Lorentz-Drude model. However, the general 

model offers more degrees of freedom in fitting a 

permittivity function in the parameter estimation 

process. Thus, the implementation of the general 

model in the FDTD method is far more 

computationally efficient compared to those of 

Lorentz-Drude model. The general model is an 

analytical function that describes the relative 

permittivity of a dispersive material. To fit a given 

relative permittivity curve accurately and quickly, a 

parameter estimation procedure is highly demanded 

in obtaining a good initial guess for the starting point 

and locating a good approximation to the global 

optimum. The advantage of the fraction form of the 

general model in equation (1a) lies in the fact that a 

very good initial guess of parameters ak and bk can 

be quickly obtained using the rational approximation 

method [9].After that, the initial values of the 

residues 𝑟𝑘 , poles  𝑝𝑘 ,  and direct coefficient 𝜀∞ are 

obtained from the parameters ak and bk by converting 

the general model  from the rational fraction form to 

the partial fraction form. Finally, the initial 

valuesare employed in a simulated annealing 

algorithm [5].to find the optimized values of 

parameters; 𝜀∞ , 𝑝𝑘and𝑟𝑘 . The high efficiency of the 

general model is demonstrated in modeling metal 

materials Au (gold in a wide range of wavelength 

from 400 to 1100 nm)The measured relative 

permittivity of these three metals.is fitted using four 

dispersion models: the 4-pole Lorentz-Drude model 

(1 Drude pole pair and 1 Lorentz pole pair), the 6-

pole Lorentz-Drude model (1 Drude pole pair and 2 

Lorentz pole pairs), the general model with 4 poles, 

and the general model with 6 poles. The Lorentz-

Drude model is expressed in the equation 
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𝜀𝑟 𝜔 = 𝜀∞ +
𝜔𝐷

2

−𝜔2  + 𝑗𝜔𝛾𝐷

+  
∆𝜀𝑙𝜔𝑙

2

−𝜔2  + 2𝑗𝜔𝛾𝑙 +  𝜔𝑙
2

𝑁𝑙

𝑙=1

(15) 

 Where, the numbers of Drude, and Lorentz pole 

pairs are one, and 𝑁𝐿 respectively. As it is shown in 

Figure 1, both the Lorentz-Drude model and the 

general model achieve better accuracy with more 

number of poles. However, the general model 

overwhelms the Lorentz-Drude model with 

significant improvement of accuracy while having 

the same number of polesMoreover, for some 

materials such as Authe general model with 4 poles 

fits the experimental data to a higher accuracy than 

that of the 6-pole Lorentz-Drude model, while 

having much lower computational cost. The general 

model with 6 poles performs a much more accurate 

fit than the 6-pole Lorentz-Drude model, while 

having the same computational cost.black circles are 

experimental data taken from. the black dot and dash 

lines are fitting curves with 4-pole Lorentz-Drude 

model (1 Drude pole pair and 1 Lorentz pole pair) 

and 6-pole Lorentz-Drude model (1 Drude pole pair 

and 2 Lorentz pole pairs), respectively; the solid red 

and blue lines are the fitting curves with 4-pole and 

6-pole general model, respectively. 

 To demonstrate the advantages of the general 

model in terms of the modeling accuracy, a 

convergence test of the general model is performed 

on the three metal materials Au. The convergence of 

the general model is studied by measuring the 

relative errors of the modeled permittivity with 

increasing the number of poles. The relative error of 

the modeled permittivity to the experimental data is 

defined by 

𝑒𝑟𝑒𝑙 (𝑑𝐵) = 5[𝑙𝑜𝑔 |𝜀𝑒𝑥𝑝  𝜔𝑖 − 𝜀 𝜔𝑖 |
2

𝑁

𝑖

− 𝑙𝑜𝑔  𝜀𝑒𝑥𝑝  𝜔𝑖 |
2 

𝑁

𝑖

(16) 

 Figure 2, depicts the relative errors of the 

general model and the Lorentz-Drude mode in 

modeling the permittivity of the metal materials Au. 

It shows that increasing the number of poles, both the 

general model and the Lorentz-Drude model reduce 

the relative error. However, the general model 

converges faster than the Lorentz-Drude model.  The 

parameters of the Lorentz-Drude model and the 

general model for modeling material Au are listed in 

Table 2 and Table 3, respectively. 

 

3. Numerical Simulations: 

 In this section, the general model is employed 

for modeling material properties of gold 

nanoparticles in the lightwave range with the FDTD 

method. It improves the accuracy of material 

modeling while does not increase the computing cost 

of the FDTD method. The optical properties such as 

absorption and extinction cross section and electric 

field enhancement of nano-ellipses are simulated by 

the accelerated 2D FDTD method and those of nano-

ellipsoids are simulated by the accelerated 3D FDTD 

method. The parameters employed for modeling the 

gold material with the general model in the FDTD 

method are similar to what is listed in Table 3.  6 

poles are used in the general model for all the 

simulations. 

 

 
 

Fig. 1: (a) Real and (b) imaginary parts of the permittivity function of Au. 

 

 
 

Fig. 2: Relative errors of modeled permittivity of Au. 
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Table 2: Values of the parameters for the Lorentz-Drude Model (Au). 

Parameters 
1 Drude 

1 Lorentz 

1 Drude 

2 Lorentz 

1 Drude 

3 Lorentz 

1 Drude 

4 Lorentz 

1 Drude 

5 Lorentz 

𝜀∞ 6.07 5.06 2.54 1.00 1.00 

𝜔𝐷(𝑒𝑉) 8.83 8.74 8.65 8.23 8.22 

𝛾𝐷(𝑒𝑉) 5.62e-2 6.27e-2 6.60e-2 1.04e-7 3.54e-8 

∆𝜀1 1.93 7.36-1 8.83e-1 1.19 5.32e-1 

𝜔1(𝑒𝑉) 3.04 2.75 3.08 3.09 2.68 

𝛾1(𝑒𝑉) 5.03e-1 2.86e-1 3.05e-1 3.87e-1 2.64e-1 

∆𝜀2 - 1.31 1.91 2.9 2.89 

𝜔2(𝑒𝑉) - 3.32 3.93 4.29 4.28 

𝛾2(𝑒𝑉) - 3.49e-1 5.86e-9 1.28e-9 1.89e-7 

∆𝜀3 - - 6.52e-1 5.29e-1 1.18 

𝜔3(𝑒𝑉) - - 2.69 2.68 3.09 

𝛾3(𝑒𝑉) - - - 2.63e-1 3.86e-1 

∆𝜀4 - - - 9.68 9.8 

𝜔4(𝑒𝑉) - - - 7.59 7.57e-1 

𝛾4(𝑒𝑉) - - - 2.42 2.41e-1 

∆𝜀5 - - - - 1.01e-6 

𝜔5(𝑒𝑉) - - - - 2.74e-1 

𝛾5(𝑒𝑉) - - - - 8.01e-2 

 
Table 3:Values of the parameters for the General Model (Au). 

Parameters 
4-pole 

General  Model 
6-pole 

General  Model 
Parameters 

4-pole 
General  Model 

6-pole 
General  Model 

𝜀∞ 2.99 1.00 𝑝4(𝑒𝑉) -6.81e-1-2.6i -2.33e-1+2.52i 

𝑝1(𝑒𝑉) -1.75e-2    -1.08e-2i -2.36e-2-8.55e-2i 𝑟4(𝑒𝑉) 3.7-1.67i 3.87e-1-3.14e-2i 

𝑟1(𝑒𝑉) 1.46+3.4e+3i 1.53+402e+2 𝑝5(𝑒𝑉) - -1.19-2.39i 

𝑝2(𝑒𝑉) -1.75e-2+1.08e-2i -2.35e-2+8.65e-2i 𝑟5(𝑒𝑉) - 7.246+1.796e-1i 

𝑟2(𝑒𝑉) 1.46-3.4e+3i 1.53-4.2e+2i 𝑝6(𝑒𝑉) - -1.186+2.390i 

𝑝3(𝑒𝑉) -6.8e-1-2.6i -2.33e-1-2.52i 𝑟6(𝑒𝑉) - 7.246-1.796e-1i 

𝑟3(𝑒𝑉) 3.69+1.67i 3.87e-1+3.14e-2i    

 

3.1 Simulation of Nano-ellipsoid: 

 The simulation results of the optical scattering 

properties of a gold nano-ellipsoid with different radii 

surrounding by air are produced by the three-

dimensional (3D) FDTD method combined with the 

general model. In the 3D FDTD simulation, a uniform 

mesh size of 1.0 nm is employed and 30,000 time 

steps are performed. In Figure 3,The absorption and 

extinction cross section spectraof Nano-ellipsoid 

with above four different configurations are 

compared and depicted. Figure3 shows that the 

absorption and extinction effect is enhanced by the 

volume of the nanoparticle. 

 

 

 
 

Fig. 3: absorption and extinction cross section spectraof gold nano-ellipsoids with different radii and incident 

      wave polarizations. 

  

3.2 Simulation of Nano-ellipse: 

 The optical properties such as the absorption and 

extinction cross section of a gold nano-ellipse with 

different configurations regarding the differences of 

sizes, incident wave angle and background materials 

are simulated using the 2D FDTD method 

accelerated by the high performanceGPU hardware 

with parallel computing technique. The TM 

polarization is used in the 2D FDTD simulations. 

The structure of the nano-ellipse is showed in Figure 

4. It has a longer radius 𝑟2and a shorter radius𝑟1. The 

nano-ellipse is illuminated by an incident plane wave 

propagating toward it with an angle of alpha to the 

𝑟2axis. 

 The optical properties of this particle are studied 

in three cases. In the first case, the nano-ellipse with 

a longer radius 𝑟2 = 20 𝑛𝑚 and a shorter radius 

𝑟1 = 10 𝑛𝑚 is surrounded by air. The plane wave 

propagates toward it from different directions, which 

means the angle alpha changes to different values. In 

the Figure 5, absorption and extinction cross section 

spectraincreases when angle alpha varying from 0 

degree to 90 degree. It shows that the peak of the 

absorption and extinction cross section increases 

when angle size changes from 0 to 90 degrees. When 
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the longer axis of the nano-ellipse aligns with electric 

field polarization direction (alpha=90 degrees), the 

peaks reach the maximum. However, the peak 

positions in the spectra do not change in the 

simulations.  

 

 
 

Fig. 4: Structure of a single nano-ellipse illuminated by an incident plane wave. 

 

 
 

Fig. 5: Extinction and absorption cross section spectra of a nano-ellipse with incident wave illuminating from 

       different directions. 

 

 In the second case, the nano-ellipse has the same 

size as that in the first case and the electric field of 

the incident wave is polarized to the direction in the 

radius axis (alpha=90 degrees). However, different 

surrounded materials such as air (index=1.0), water 

(index=1.33), silica (index=1.42), Polymethyl 

Methacrylate (index=1.49) and silicon (index=3.2) 

are used in the simulations. The extinction and 

absorption cross-sections are depicted in Figure 6. It 

shows that peaks of the cross-sections increase along 

with the increase of the background material refractive 

index. The only one exception is absorption spectrum 

when the particle issurrounded by silicon with 

refractive index as 3.2. Its peak is no larger than those 

of all the other spectra with lower surrounded material 

refractive indices. With the increase of the background 

refractive index, the peak positions in the spectra are 

shifted to the long wavelengths (red shift). 

 

 
 

Fig. 6: Extinction and absorption cross-section spectra of a nano-ellipse surrounded by different materials.

 

 The extinction and absorption cross-sections are 

depicted in Figure 7. It shows clearly that the peaks of 

the cross-sections increase with the increase of the 

radius size r2, but the peak positions are not sensitive. 

 

3.3 Simulation of Nano-ellipse Dime:r 

 The optical properties of a gold nano-ellipse 

dimer shown in Figure 8 are simulated using the 2D 

FDTD method with TM polarization. The dimer 

consists of two identical nano-ellipses with a longer 

radius r2 and a shorter radius r1. The two nano-

ellipses are aligned in the same axis of the radius r2. 

The incident plane wave propagates toward the dimer 

with an angle of alpha to the common axis. The 

distance between the nearest points on the two 

nanoellipses is d. 
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Fig. 7: Extinction and absorption cross-section spectra of a nano-ellipse with different raidus r2. 

 

 
 

Fig. 8: Structure of a nano-ellipse dimer illuminated by an incident plane wave. 

 

 The optical properties of this nano-ellipse dimer 

are demonstrated in three cases.  In the first case, the 

incident angle alpha is scanned from 0 degree to 90 

degrees. The dimmer is surrounded by air with 

r1=10nm and r2=20nm. The distance between the two 

nano-ellipses is d=2nm. Figure 9, gives the extinction 

and absorption cross-section spectra for different 

incident angles. It shows that the peaks of the cross-

section spectra keep increasing when alpha varies 

from 0 to 90 degrees but the peak positions do not 

change accordingly. 

 In the second case, the distance d between the two 

nano-ellipse in the dimer varies from 2nm to 6nm. The 

dimer is surrounded by air with r1=10nm and 

r2=20nm. Figure 10,shows the cross-section spectra 

for different values of d from 2nm to 6nm when the 

incident wave propagating along the common axis 

(alpha=0 degree) 

 The background refractive index of the dimer is 

changed to 1.00, 1.33, 1.42, 1.49 and 3.20 

corresponding the materials air, water, silica, 

Polymethyl Methacrylate and silicon, respectively. 

The distance d is 2nm and the length of the radius r1 

and r2 is 10nm and 20nm, respectively. The incident 

angle alpha=90 degrees. Figure 11, shows that with 

the increase of the background index, the peak of 

extinction crosssection spectrum increases and the 

peak position moves from the visible lightwave range 

to the infrared range. 

 

 
 

Fig. 9: Extinction and absorption cross-section spectra of a nano-ellipse dimer illuminated by incident wave            

      from different angles. 
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Fig. 10: Extinction and absorption cross section spectra of a nano-ellipse dimer with different values of  

        distance between its two nano-ellipses. The angle alpha of the incident wave is 0 degree. 

 

 
 

Fig. 11: Extinction and absorption cross-section spectra of a nano-ellipse dimer surrounded by different  

       background materials. The angle alpha of the incident wave is 90 degrees. 

 

 Table 4, lists the memory and computational 

costs of different FDTD schemes, as well as the 

relative errors of the extinction cross-section 

compared with the analytical solution. It shows that 

compared with the conventional Lorentz-Drude 

model, the FDTD method with the 4-pole General 

Model achieves a smaller relative error while taking 

much less computational effort, and the FDTD 

method with the 6-pole achieves even better accuracy 

yet maintaining a comparable computational cost. It 

proves that the general model is more efficient in 

terms of memory and computational costs in 

modeling dispersive materials in comparison with 

conventional models. It is a powerful and efficient 

tool for simulating broadband optical phenomena of 

nanoparticles with dispersive materials. 

 
Table 4: Computational costs and relative errors of different FDTD schemes. 

Scheme 3 

(6 General Model poles) 

 

Scheme 2 

(4 General Model poles) 

 

Scheme 1 

(1 Drude pole pair 

and 2 Lorentz pole 

pairs) 

 

6.604 5.872 6.600 
Memory 

(mega-byte) 

702.04 599.26 694.58 
Computation time 

(second) 

-26.04 -25.31 -23.97 
Relative error (dB) 

(Extinction cross section 

 

4. Conclusion: 

 The optical properties of a single gold nano-

ellipsoid are simulated by the 3D FDTD method first. 

The general model is employed for modeling the 

susceptibility of the dispersive material. It shows that 

the absorption effect of a gold single nano-ellipsoid is 

mainly affected by the length of the radius which is 

parallel to the direction of theelectric field 

polarization. A single gold nano-ellips, a gold nano-

ellipse dimerare simulated with the 2D FDTD method 

with general model for modeling the material 

susceptibility. The extinction absorption cross-section 

spectra of them are studied in many cases where the 

incident wave angle, the value of d, the length of the 

radius r2 and the refractive index of the background 

material is changed, respectively. The cross-section 

spectra of a nano-ellipse dimer are much more 

sensitive to the change of the distance d in the 

situation where the electric field polarization is parallel 

to the common axis than that in the situation where the 

electric field polarization is perpendicular to the 

common axis. This systematic study of the optical 

properties of different nano-particles gives a good 

reference for design of optical devices utilizing the 

cross-section spectra characteristics of nano-particles, 

such as optical sensors, optical filters, heat sinks, etc. 
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